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Abstract. The geometry of Nambu–Jacobi and generalized Jacobi manifolds is studied. A large
collection of examples is given. The characteristic distribution generated by the Hamiltonian
vector fields on a Nambu–Jacobi manifold is proved to be completely integrable, and the induced
geometrical structure of the leaves of the corresponding generalized foliation is ellucidated.

1. Introduction

In [37], Nambu proposed a generalization of Hamiltonian mechanics introducing an-bracket
on Rn given by

{f1, . . . , fn} = ∂(f1 . . . fn)

∂(x1 . . . xn)
. (1)

This approach was later discussed by Bayen and Flato [8] who investigated the relation of
Nambu’s mechanics with the Dirac theory of constraints (see also [24, 36, 38]).

In [41], Takhtajan realized that the bracket given by (1) satisfies the so-called
fundamental identity

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , gi−1, {f1, . . . , fn−1, gi}, gi+1, . . . , gn}. (2)

This led him to introduce the notion of Nambu–Poisson manifold as a manifold whose
ring of functions is endowed with an-bracket satisfying (2). However, the fundamental
identity was previously considered by Filippov [14] (see also [34, 35]) in a pure algebraic
context. Recently, Azćarragaet al [2, 3] have considered an alternative identity called the
generalized Jacobi identity:

Alt {f1, . . . , fn−1, {g1, . . . , gn}} = 0 (3)
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for n = 2p even. The generalized Jacobi identity led them to introduce the so-called
generalized Poisson manifolds. Indeed, the ring of functions of a generalized Poisson
manifold carries an-bracket satisfying (3).

Note that the relation between the ring of functionsC∞(M,R) and the manifoldM is
given by

{f1, . . . , fn} = 3(df1, . . . ,dfn)

where3 is a n-vector onM. It should be noted that (2) and (3) are in fact integrability
conditions which extend the well known Jacobi identity for Poisson manifolds in the first
case, and the vanishing of the Nijenhuis–Schouten bracket of the Poisson tensor with itself
in the second case. The relationship between these two kinds of brackets is very simple:
any Nambu–Poisson bracket of even order is a generalized Poisson bracket. Furthermore,
Azcárragaet al have recently proved [5] that if we extend the notion of generalized Poisson
manifold by adopting the generalized Jacobi identity (3), wheren = 2p is replaced by
arbitrary (even or odd)n, then a Nambu–Poisson bracket of arbitrary order is a generalized
Poisson bracket. However, it should be noted that in the odd case the generalized Jacobi
identity is unrelated to the condition [3,3] = 0, which is trivially satisfied by any odd-order
multivector3.

In some sense, Nambu–Poisson manifolds have nicer geometrical properties than
generalized Poisson manifolds. In fact, the Hamiltonian vector fields define a generalized
foliation such that its leaves inherit a Nambu–Poisson structure. Forn > 3 the leaves are
points or they have dimensionn and the induced Nambu–Poisson structure is given by a
volume form (i.e. the Nambu–Poisson bracket is locally like (1)). For generalized Poisson
manifolds we cannot ensure that the generalized distribution would be involutive in general.

We are assuming that the above brackets are derivations in each argument. However, we
can weaken this assumption, and impose that they are only first-order linearn-differential
operators. In such a case, ifn = 2 and we impose the identity (2), or equivalently, the
identity (3), we recover the Jacobi manifolds introduced by Lichnerowicz [32] (see also
[18, 25]) which, recently, have gained much attention (see [12, 13, 20, 23, 28, 29]). Ifn > 2
and we impose the identity (2) we obtain the notion of Nambu–Jacobi manifolds [34], and
if we impose (3) we obtain the notion of generalized Jacobi manifolds [39]. They are the
generalizations of Nambu–Poisson and generalized Poisson manifolds, respectively.

The aim of the present paper is to discuss a general geometric framework for Nambu–
Jacobi and generalized Jacobi manifolds. To do this, we consider a generalized almost Jacobi
bracket of ordern on am-dimensional manifoldM which is given by a skew-symmetric first-
order linearn-differential operator or equivalently by a pair(3,�) ∈ Vn(M)⊕ Vn−1(M),
whereV r (M) is the space ofr-vectors onM. The pair (3,�) is called a generalized almost
Jacobi structure of ordern, and (M,3,�) is called a generalized almost Jacobi manifold.
If � = 0, then we obtain the generalized almost Poisson structures of ordern introduced
in [19]. By imposing the integrability conditions (2) or (3) we recover the Nambu–Jacobi
manifolds discussed in [34] or the generalized Jacobi manifolds studied in [39]. The relation
between both is once more simple: any Nambu–Jacobi manifold is generalized Jacobi. We
discuss in section 3 a lot of new examples of these kind of geometric structures. Thus, we
introduce the notion of compatible Jacobi structures and we prove that if on a manifoldM

there exist two compatible Jacobi structures thenM is a generalized Jacobi manifold of order
four. As a consequence, we deduce that the phase space of a time-dependent Hamiltonian
system is a generalized Jacobi manifold. Another interesting example of generalized Jacobi
manifolds obtained in this section are the 3-Sasakian manifolds. These manifolds appear in
many places in geometry and mathematical physics. In fact, in [15], the authors showed that
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a 3-Sasakian structure on a manifold of dimension seven is characterized by the existence of
at least three independent Killing spinors (see also [7]). Also, in [6], the relation between
the 3-Sasakian structures on the unit sphereS7 and the instantons is discussed. More
examples of generalized Jacobi manifolds are the unit spheres of certain types of Euclidean
vector spaces. More precisely, we prove that ifg is a generalized Lie algebra of order 2n
endowed with an inner product then the unit sphere ofg is a generalized Jacobi manifold of
order 2n. In particular, for each primitive invariant symmetric polynomialK on a simple
compact Lie algebrag, we obtain a generalized Jacobi structure on the unit sphere ofg.
To do this, we use the structure of generalized Lie algebra ong defined byK (see [3]).
Examples of Nambu–Jacobi manifolds are also given in this section. These examples are
fundamental in the sense that any Nambu–Jacobi manifold is constructed by gluing pieces
like them. Indeed, in section 4, after introducing the notion of a Hamiltonian vector field on
a generalized almost Jacobi manifold, we prove that the characteristic distribution generated
by the Hamiltonian vector fields on a Nambu–Jacobi manifold is involutive (theorem 4.3),
and we obtain that each leaf of this generalized foliation inherits a Nambu–Jacobi structure.
These results globalize the local ones given by Marmoet al in [34].

2. Nambu–Jacobi and generalized Jacobi manifolds

Let M be a differentiable manifold of dimensionm. We will use the following notation:
• C∞(M,R) is the algebra ofC∞ real-valued functions onM;
• X(M) is theC∞(M,R)-module of vector fields onM;
• Vk(M) is the space ofk-vectors onM;
• �k(M) is the space ofk-forms onM.

Moreover, our conventions for the exterior calculus are those of [43].
A generalized almost Jacobi bracket of ordern onM is ann-linear mapping

{, . . . , } : C∞(M,R)× . . .(n . . .× C∞(M,R) −→ C∞(M,R)

satisfying the following properties.
(i) Skew-symmetry:

{f1, . . . , fn} = εσ {fσ(1), . . . , fσ(n)}

for all f1, . . . , fn ∈ C∞(M,R) andσ ∈ Sn, whereSn is the group of the permutations of
ordern andεσ is the signature of the permutationσ .

(ii) {, . . . , } is a first-order linear differential operator onM with respect to each
argument, i.e.

{f1g1, f2, . . . , fn} = f1{g1, f2, . . . , fn} + g1{f1, . . . , fn} − f1g1{1, f2, . . . , fn}

for all f1, g1, f2, . . . , fn ∈ C∞(M,R).
If {, . . . , } is a generalized almost Jacobi bracket of ordern then we can define an

n-vector3 and an (n− 1)-vector� as follows

�(df1, . . . ,dfn−1) = {1, f1, . . . , fn−1}

3(df1, . . . ,dfn) = {f1, . . . , fn} +
n∑
i=1

(−1)ifi�(df1, . . . , d̂fi, . . . ,dfn)
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for all f1, . . . , fn ∈ C∞(M,R). Conversely, any pair(3,�) ∈ Vn(M)⊕ Vn−1(M) defines
a generalized almost Jacobi bracket of ordern given by

{f1, . . . , fn} = 3(df1, . . . ,dfn)+
n∑
i=1

(−1)i−1fi�(df1, . . . , d̂fi, . . . ,dfn).

Thus, the pair(3,�) ∈ Vn(M)⊕ Vn−1(M) is called ageneralized almost Jacobi structure
of order n and (M,3,�) is a generalized almost Jacobi manifold. If � = 0, then we
obtain ageneralized almost Poisson structure of ordern (see [19]).

A more rich structure can be obtained by adding integrability conditions to the associated
generalized almost Jacobi bracket{, . . . , }. In fact, two different integrability conditions may
be assumed.

(iii 1) (Fundamental identity)

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , gi−1, {f1, . . . , fn−1, gi}, gi+1, . . . , gn} (4)

for all f1, . . . , fn−1, g1, . . . , gn ∈ C∞(M,R). In this case,{, . . . , } is called aNambu–
Jacobi or n-Jacobi bracket, and (M,3,�) is a Nambu–Jacobi manifold of ordern (see
[34]). Note that if� = 0, {, . . . , } is a derivation in each argument and, therefore, it defines
a Nambu–Poisson bracket, and (M,3) is a Nambu–Poisson manifold of ordern (see [41]).

In [34], the authors have proved the following results.

Proposition 2.1. Let (M,3,�) be a Nambu–Jacobi manifold of ordern, n > 2. Then
(i) 3 is a Nambu–Poisson structure onM of ordern.
(ii) � is a Nambu–Poisson structure onM of ordern− 1.
(iii) For every x ∈ M such that3(x) 6= 0, there existsθx ∈ T ∗x M such that

iθx3(x) = �(x).
(iv) If f1, . . . , fn−2 ∈ C∞(M,R) we have

L
X�f1...fn−2

3 = 0

whereL is the Lie derivative operator onM andX�f1...fn−2
is the vector field defined by

X�f1...fn−2
(h) = �(df1, . . . ,dfn−2, dh) for all h ∈ C∞(M,R).

Remark 2.2. Let 3 be a generalized almost Poisson structure of ordern on a manifoldM
andf1, . . . , fn−1 ∈ C∞(M,R). Then, the vector fieldX3f1...fn−1

given by

X3f1...fn−1
(h) = 3(df1, . . . ,dfn−1, dh)

for all h ∈ C∞(M,R) is called theHamiltonian vector fieldassociated with the functions
f1, . . . , fn−1 (see [19]).

(iii 2) (Generalized Jacobi identity)

Alt {f1, . . . , fn−1, {g1, . . . , gn}} = 0 (5)

for all f1, . . . , fn−1, g1, . . . , gn ∈ C∞(M,R). In this case,{, . . . , } is called ageneralized
Jacobi bracket, and (M,3,�) is a generalized Jacobi manifold of ordern (see [39]). If
� = 0 then{, . . . , } is a derivation in each argument and (M,3) is a generalized Poisson
manifold (see [2, 3, 5, 19]).

For n even, the integrability conditions of the generalized Jacobi structure are given by
the following result (see [39]).
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Proposition 2.3. Let (M,3,�) be a generalized almost Jacobi manifold of even ordern,
n = 2s. Then (M,3,�) is a generalized Jacobi manifold if and only if

[3,3] = 2(2s − 1)3 ∧� and [3,�] = 0

where [, ] denotes the Schouten–Nijenhuis bracket.

If n = 2 then the fundamental identity and the generalized Jacobi identity coincide
and, in such a case, (M,3,�) is a Jacobi manifold [32]. Interesting examples of Jacobi
manifolds are contact manifolds and locally conformal symplectic manifolds which we will
describe below.

Let M be a (2m + 1)-dimensional manifold andη a 1-form onM. We say thatη is a
contact 1-form ifη ∧ (dη)m 6= 0 at every point. In such a case (M,η) is called acontact
manifold (see, for example, [9]). The Darboux theorem ([9]) states that around every point
of M there exist canonical coordinates (t, q1, . . . , qm, p1, . . . , pm) such that

η = dt −
m∑
i=1

pi dqi.

A contact manifold (M,η) is a Jacobi manifold. In fact, we define the 2-vector3 onM by

3(α, β) = dη([−1(α), [−1(β)) (6)

for all α, β ∈ �1(M), where[ : X(M) −→ �1(M) is the isomorphism ofC∞(M,R)-
modules given by[(X) = iX dη + η(X)η. The vector field� is just the Reeb vector
field � = [−1(η) of (M,η). We remark thati�η = 1 and i� dη = 0. Using canonical
coordinates we get

3 =
m∑
i=1

(
∂

∂qi
+ pi ∂

∂t

)
∧ ∂

∂pi
� = ∂

∂t
.

An interesting class of contact manifolds are the Sasakian manifolds which we will describe
next.

Let (M,ϕ,�, η, g) be a (2m + 1)-dimensionalalmost contact metric manifold, that is
(see [9]),ϕ is a (1,1) tensor field,η is a 1-form,� is a vector field andg is a Riemannian
metric onM such that

ϕ2 = −Id+ η ⊗� η(�) = 1 g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )
for all X, Y ∈ X(M), Id being the identity transformation. Then we haveϕ(�) = 0,
η ◦ ϕ = 0 andη(X) = g(X,�), for all X ∈ X(M). The fundamental2-form 8 of M is
defined by8(X, Y ) = g(X, ϕY ), and the (2m+ 1)-form η ∧8m is a volume form onM.
The almost contact metric is said to be ([10]):normal if [ϕ, ϕ]+dη⊗� = 0 andSasakian
if it is normal and dη = 28. If (M,ϕ,�, η, g) is a Sasakian manifold then (M,η) is a
contact manifold.

Other examples of Jacobi manifolds are the locally conformal symplectic manifolds.
An almost symplectic manifoldis a pair (M,�), whereM is an even-dimensional

manifold and� is a non-degenerate 2-form onM. An almost symplectic manifold is
said to belocally conformal symplectic (l.c.s.)if for each pointx ∈ M there is an open
neighbourhoodU such that d(e−σ�) = 0, for some functionσ : U −→ R. If U = M

thenM is said to be aglobally conformal symplectic (g.c.s.)manifold (see, for example,
[42]). An almost symplectic manifold (M,�) is l.(g.)c.s. if and only if there exists a closed
(exact) 1-formω such that

d� = ω ∧�. (7)
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The 1-formω is called theLee 1-formof M. It is obvious that the l.c.s. manifolds with
Lee 1-form identically zero are just the symplectic manifolds. We define a 2-vector3 and
a vector field� by

3(α, β) = �([−1(α), [−1(β)) � = [−1(ω) (8)

for all α, β ∈ �1(M), where[ : X(M) −→ �1(M) is the isomorphism ofC∞(M,R)-
modules given by[(X) = iX�. Then (M,3,�) is a Jacobi manifold.

Moreover, around every point ofM there exist canonical coordinates (q1, . . . , qm,
p1, . . . , pm) and a local differentiable functionσ such that

� = eσ
∑
i

dqi ∧ dpi ω = dσ =
∑
i

(
∂σ

∂qi
dqi + ∂σ

∂pi
dpi

)
3 = e−σ

∑
i

(
∂

∂qi
∧ ∂

∂pi

)
� = e−σ

∑
i

(
∂σ

∂pi

∂

∂qi
− ∂σ

∂qi

∂

∂pi

)
.

Finally, a very simple but interesting Jacobi structure is that provided by a vector field�
on a manifoldM, i.e. the Jacobi structure is given by (3 = 0,�). This structure is closely
related with Virasoro algebras (see [17]).

Now, let (M,3,�) be a generalized almost Jacobi manifold of even ordern, n = 2s.
For eachp ∈ R− {0}, we define onM × R the 2s-vector

(3̃,�)p = e−pt3+ e−pt
∂

∂t
∧� (9)

wheret is the usual coordinate onR. Then, from proposition 2.3 and the properties of the
Schouten–Nijenhuis bracket, we conclude the following.

Proposition 2.4. (3, (p/(2s − 1))�) is a generalized Jacobi structure onM if and only if
(3̃,�)p is a generalized Poisson structure onM × R.

Remark 2.5. If (M,3,�) is a Jacobi manifold then the Poisson manifold (M×R, (3̃,�)1)
is called the Poissonization of the Jacobi manifoldM (see [20]) or the tangentially exact
Poisson manifold associated withM (see [32]). For a contact manifold (M,η), (3̃,�)1
is just its symplectification (see [31]), i.e. the Poisson structure defined by the symplectic
form

� = et dη + et dt ∧ η. (10)

In particular, when (M,ϕ,�, η, g) is a Sasakian manifold we can define on the product
manifoldM × R a complex structureJ as follows (see [9]):

J = ϕ ◦ (pr1)∗ −
1

2
(pr2)

∗(dt)⊗�+ 2(pr1)
∗η ⊗ ∂

∂t

where pr1 : M × R −→ M and pr2 : M × R −→ R are the canonical projections onto the
first and second factor, respectively. Moreover, the Riemannian metric onM×R defined by

h = et (2pr∗1(g)+ 1
2pr∗2(dt)⊗ pr∗2(dt))

is compatible withJ and a direct computation proves that the Kähler 2-form of the Hermi-
tian structure (J, h) is just the symplectic 2-form� given by (10). Therefore, we conclude
that the symplectification of a Sasakian manifold is a Kähler manifold. Remember that the
Kähler 2-form of a Hermitian structure (J, h) on a manifoldN is the 2-form� defined by
�(X, Y ) = h(X, JY ), and thatN is said to be K̈ahler if� is closed.

The relationship between Nambu–Jacobi and generalized Jacobi manifolds is given in
the following result
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Proposition 2.6. Every Nambu–Jacobi manifold is a generalized Jacobi manifold.

Proof. In fact, letM be a Nambu–Jacobi manifold with Nambu–Jacobi bracket{, . . . , }.
Using (4) and the antisymmetry of the bracket{, . . . , }, we obtain

Alt {f1, . . . , fn−1, {g1, . . . , gn}} = n(−1)n−1Alt {f1, . . . , fn−1, {g1, . . . , gn}}
which implies that Alt{f1, . . . , fn−1, {g1, . . . , gn}} = 0. �

3. Examples of Nambu–Jacobi and generalized Jacobi manifolds

In this section, we will describe some examples of Nambu–Jacobi and generalized Jacobi
manifolds.

First, we will give some examples of Nambu–Jacobi manifolds. Some of these examples
have been obtained in [34].

Example 1. Let (M,3) be a Nambu–Poisson manifold of ordern, n > 2. If f ∈
C∞(M,R) then idf3 is also a Nambu–Poisson structure onM (see [19]).

On the other hand, since3 is locally decomposable (see [16]) then we have

X3f1...fn−1
∧3 = 0 (11)

for all f1, . . . , fn−1, whereX3f1...fn−1
is the Hamiltonian vector field on (M,3) associated

with the functionsf1, . . . , fn−1. Thus, from (4) and (11), we obtain that (3, idf3) is a
Nambu–Jacobi structure of ordern.

Since a closed 1-form is locally exact, the above result can be generalized as follows.

Proposition 3.1. If (M,3) is a Nambu–Poisson manifold of ordern, n > 2, andθ is a
closed 1-form onM then(3, iθ3) is a Nambu–Jacobi structure of ordern onM.

Next, letM be an oriented manifold of dimensionn, and choose a volume formν on
M. Denote by3ν the n-vector onM given by

3ν(df1, . . . ,dfn)ν = df1 ∧ · · · ∧ dfn (12)

for all f1, . . . , fn ∈ C∞(M,R). Then (M,3ν) is a Nambu–Poisson manifold of ordern
(see [16] and [19]). Moreover, we have the following.

Proposition 3.2. Let3ν be the Nambu–Poisson tensor of ordern associated with a volume
form ν on an oriented manifoldM of dimensionn. Suppose thatθ is a 1-form onM. Then,
the generalized almost Jacobi manifold (M,3ν, iθ3ν) is a Nambu–Jacobi manifold if and
only if θ is a closed 1-form.

Proof. If θ is a closed 1-form onM, it directly follows from proposition 3.1 that (3ν, iθ3ν)
is a Nambu–Jacobi structure onM.

Conversely, suppose thatθ is a 1-form onM such that (M,3ν, iθ3ν) is a Nambu–Jacobi
manifold of ordern. From (12), we deduce that there exist local coordinates (x1, . . . , xn)
such that

3ν = ∂

∂x1
∧ · · · ∧ ∂

∂xn
.
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Moreover, if θ = θk dxk then, from proposition 2.1 (iv) and using the Hamiltonian vector
field

X
iθ3ν
x1...x̂i ...x̂j ...xn

= (−1)n+i+j
(
θj

∂

∂xi
− θ i ∂

∂xj

)
we obtain that(

∂θj

∂xi
− ∂θ

i

∂xj

)
3ν = 0

for all i, j = 1, . . . , n. Hence, dθ = 0. �

Example 2. Let (M,3) be a Nambu–Poisson manifold of ordern, n > 2 (respectively,
a symplectic manifold of dimension two). Proceeding as in example 1, and using (4) and
the fact that3 is locally decomposable, we deduce that the pair (0,3) is a Nambu–Jacobi
structure of ordern+ 1 (respectively, of order three) onM.

Next, we will give some examples of generalized Jacobi manifolds.

Example 3. Let � be a (2n− 1)-vector on a manifoldM. Then, from proposition 2.3 we
deduce that (0,�) is a generalized Jacobi structure of order 2n onM.

Example 4. Let3 be a generalized Poisson structure onM of order 2n. If f ∈ C∞(M,R)
then

[f3, f3] = 2idf3 ∧ (f3). (13)

On the other hand, we can define a homomorphism ofC∞(M,R)-modules # :
�2n−1(M) −→ X(M) as follows:

#(α1 ∧ · · · ∧ α2n−1)(β) = 3(α1, . . . , α2n−1, β) for α1, . . . , α2n−1, β ∈ �1(M).

Now, consider the homomorphism ofC∞(M,R)-modules#̃ : �k(M) −→ Vk(2n−1)(M)

given by

#̃(α)(α1, . . . , αk(2n−1)) = (−1)k

k!((2n− 1)!)k
∑

σ∈Sk(2n−1)

εσ α(#(ασ(1) ∧ · · · ∧ ασ(2n−1)),

× . . . ,#(ασ((k−1)(2n−1)+1) ∧ · · · ∧ ασ(k(2n−1))))

for all α ∈ �k(M) and α1, . . . , αk(2n−1) ∈ �1(M), where Sk(2n−1) is the group of the
permutations of orderk(2n− 1) andεσ is the signature of the permutationσ (see [22]).

Then we havẽ#(dα) = [3, #̃α], for all α ∈ �k(M) (see [22] for a proof). Taking
α = df we conclude that

[3, idf3] = 0. (14)

Thus, using (13), (14) and proposition 2.3, we deduce that (f3, (1/(2n − 1))idf3) is a
generalized Jacobi structure of order 2n onM.

Remark 3.3. If 3 is a symplectic structure andf = e−σ is a positive function then the
corresponding Jacobi structure (f3, idf3) is g.c.s. (see section 2).

Example 5. (Bihamiltonian manifolds) First, we will introduce the notion of compatible
Jacobi structures. This definition extends the definition of compatible Poisson structures.

Two Jacobi structures (31,�1) and (32,�2) on a manifoldM are said to becompatible
if (31+32,�1+�2) is a Jacobi structure onM.

A direct computation, using (9), proposition 2.3 and remark 2.5, shows the following
result.
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Proposition 3.4. Let (31,�1) and (32,�2) be two Jacobi structures on a manifoldM.
Then the following statements are equivalent:

(i) the structures (31,�1) and (32,�2) are compatible;
(ii) [31,32] = �1 ∧32+�2 ∧31 andL�1

32+ L�2
31 = 0;

(iii) the Poissonizations

(3̃1,�1)1 = e−t31+ e−t
∂

∂t
∧�1 (3̃2,�2)1 = e−t32+ e−t

∂

∂t
∧�2

are compatible Poisson structures on the product manifoldM × R.

Now, suppose that (31,�1) and (32,�2) are compatible Jacobi structures on a manifold
M. Denote by3 and by� the 4-vector and the 3-vector onM given by

3 = 31 ∧32 � = �1 ∧32+�2 ∧31. (15)

Using proposition 3.4(ii), we have

[3,3] = 43 ∧� [3,�] = 0.

Thus, (M,3, 2
3�) is a generalized Jacobi manifold of order 4 (see proposition 2.3).

Remark 3.5. A direct computation proves that the 4-vector

(3̃,�)2 = e−2t3+ e−2t ∂

∂t
∧�

is just

(3̃,�)2 = (3̃1,�1)1 ∧ (3̃2,�2)1.

Thus, from proposition 2.4, we deduce that (M × R, (3̃,�)2) is a generalized Poisson
manifold of order four. In fact, if3̄1 and 3̄2 are two compatible Poisson structures on a
manifoldN then3̄1 ∧ 3̄2 is a generalized Poisson structure of order four onN (see [21]).

Next, we will describe a particular case, a generalized Jacobi structure on the phase
space of a time-dependent Hamiltonian system.

As is well known, the phase space of a time-dependent Hamiltonian system is a product
manifoldM = R× T ∗Q, whereT ∗Q is the cotangent bundle of a differentiable manifold
Q of dimensionm. Denote byλQ the Liouville 1-form ofT ∗Q and by�Q = −dλQ the
canonical symplectic structure onT ∗Q (see [30] for details).

If pr1 : R × T ∗Q −→ R and pr2 : R × T ∗Q −→ T ∗Q are the canonical projections
onto the first and second factor, respectively, then a direct computation proves that

η1 = pr∗1(dt)− pr∗2(λQ)

is a contact 1-form onR× T ∗Q. In fact, if (q1, . . . , qm, p1, . . . , pm) are fibred coordinates
on T ∗Q then

η1 = dt −
m∑
i=1

pi dqi.

Thus, if (31,�1) is the associated Jacobi structure with the contact 1-formη1, we have

31 =
m∑
i=1

(
∂

∂qi
+ pi ∂

∂t

)
∧ ∂

∂pi
�1 = ∂

∂t
. (16)
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On the other hand, we also can define inR× T ∗Q a Poisson structure32 as follows. Let
f ∈ C∞(R × T ∗Q,R). Then, we consider the vector fieldX2

f which is characterized by
the following conditions:

(pr∗1(dt))(X
2
f ) = 0 iX2

f
(pr2)

∗(�Q) = df − ∂f
∂t

pr∗1(dt).

Now, we define the bracket of two functionsf andg by

{f, g}2 = pr∗2(�Q)(X
2
f , X

2
g).

Thus,(R× T ∗Q, { , }2) is a Poisson manifold (see, for instance, [1, 11]). Moreover, if32

is the associated Poisson structure then the Hamiltonian vector fieldX
32
f of a functionf is

X2
f . The structure32 is just the Poisson structure onR × T ∗Q defined by the canonical

cosymplectic structure ofR × T ∗Q (for the definition and properties of cosymplectic
manifolds, see [1, 11, 30]).

In fibred coordinates (t, q1, . . . , qm, p1, . . . , pm), we have

32 =
m∑
i=1

∂

∂qi
∧ ∂

∂pi
. (17)

Using (16), (17) and proposition 3.4(ii), we deduce that the Jacobi structure (31,�1) and
the Poisson structure32 are compatible. Therefore, if3 and� are the 4-vector and the
3-vector onR× T ∗Q given by

3 = 31 ∧32 =
∑
i,j

(
∂

∂qi
+ pi ∂

∂t

)
∧ ∂

∂pi
∧ ∂

∂qj
∧ ∂

∂pj

� = �1 ∧32 =
∑
i

∂

∂t
∧ ∂

∂qi
∧ ∂

∂pi

then we conclude that the pair (3, 2
3�) defines a generalized Jacobi structure of order four

on R× T ∗Q.

Example 6. (3-Sasakian manifolds) An interesting example of generalized Jacobi manifold
are the 3-Sasakian manifolds [26] (see also [6, 7, 10, 15]).

First, we recall the definition of hyper-K̈ahler manifold which will be useful in the
following.

A hyper-Kähler manifold is a differentiable manifoldM of dimension 4n with a
Riemannian metricg and three complex structuresJ1, J2, J3 compatible withg and such
that:

(i) the complex structures satisfy the quaternionic relations, i.e.J3 = J1◦J2 = −J2◦J1;
(ii) the Kähler forms�i , defined by�i(X, Y ) = g(X, JiY ) for all X, Y ∈ X(M), are

closed.
If we consider the Poisson structurē3i associated with the K̈ahler form�i , then

[3̄i, 3̄j ] = 0 for all i, j , that is, 3̄1, 3̄2 and 3̄3 are compatible (see [21]). Thus, the
fundamental 4-vector

3̄ = 3̄1 ∧ 3̄1+ 3̄2 ∧ 3̄2+ 3̄3 ∧ 3̄3

defines a generalized Poisson structure of order 4 onM (see [21]).
A 3-Sasakian manifoldis a (4n + 3)-dimensional Riemannian manifold (M,g) that

admits three distinct Sasakian structures(ϕi,�i , ηi, g)i=1,2,3 whose vector fields�1,�2,�3

are mutually orthogonal and satisfy [�σ(1),�σ(2)] = 2εσ�σ(3), for all σ ∈ S3 (see [10, 26]).
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If (ϕi,�i , ηi, g)i=1,2,3 is a 3-Sasakian structure onM then it can be proved (see [26])
that (ϕi,�i , ηi, g)i=1,2,3 is an almost contact 3-structure, that is

ησ(1)(�σ(2)) = 0 ϕσ(1)�σ(2) = εσ�σ(3) ησ(1) ◦ ϕσ(2) = εσ ησ(3)
ϕσ(1) ◦ ϕσ(2) = ησ(2) ⊗�σ(1) + εσϕσ(3)

(18)

for all σ ∈ S3.

Proposition 3.6. Let (ϕi,�i , ηi, g)i=1,2,3 be a 3-Sasakian structure on a manifoldM
and suppose that (3i,�i) is the associated Jacobi structure with the contact 1-formηi ,
i = 1, 2, 3. Then we have that:

(i) the structures (31,�1), (32,�2) and (33,�3) are compatible;
(ii) if 3 and� are the 4-vector and the 3-vector onM given by

3 =
3∑
i=1

3i ∧3i � =
3∑
i=1

�i ∧3i

then (3, 2
3�) is a generalized Jacobi structure onM of order four.

Proof. Using (18) and remark 2.5, we obtain that (M ×R, J1, J2, J3, h) is a hyper-K̈ahler
manifold, where

Ji = ϕi ◦ (pr1)∗ −
1

2
(pr2)

∗(dt)⊗�i + 2(pr1)
∗(ηi)⊗ ∂

∂t

h = et (2pr∗1(g)+
1

2
pr∗2(dt)⊗ pr∗2(dt))

and pr1 : M ×R −→ M and pr2 : M ×R −→ R denote the canonical projections onto the
first and second factor, respectively.

Now, let �i be the K̈ahler 2-form of the K̈ahler structure (Ji, h) and let 3̄i be the
associated Poisson structure with�i , i = 1, 2, 3. Since (M×R, �i) is the symplectification
of the contact manifold (M,ηi), we have that

3̄i = (3̃i,�i )1 i = 1, 2, 3.

Thus, using proposition 3.4(iii), we deduce that the structures (31,�1), (32,�2) and
(33,�3) are compatible. This proves (i).

(ii) follows from (i) and proposition 3.4(ii). �

We will describe an interesting particular case, a generalized Jacobi structure on the
sphereS4n+3.

On R4n+4, we consider the usual hyper-Kähler structure (J1, J2, J3, h). Let �i be the
Kähler 2-form of the Hermitian structure(Ji, h), i = 1, 2, 3. Then the Poisson vectors̄31,
3̄2 and3̄3 associated with�1, �2 and�3 respectively, are given by

3̄1 =
n+1∑
i=1

(
∂

∂x2
i

∧ ∂

∂x1
i

+ ∂

∂x4
i

∧ ∂

∂x3
i

)

3̄2 =
n+1∑
i=1

(
∂

∂x3
i

∧ ∂

∂x1
i

+ ∂

∂x2
i

∧ ∂

∂x4
i

)

3̄3 =
n+1∑
i=1

(
∂

∂x4
i

∧ ∂

∂x1
i

+ ∂

∂x3
i

∧ ∂

∂x2
i

)
where (x1

i , x
2
i , x

3
i , x

4
i ) are the usual coordinates onR4n+4.
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On the other hand, letA be the radial vector field onR4n+4, that is

A =
4∑

j=1

n+1∑
i=1

x
j

i

∂

∂x
j

i

.

Define the vector fields onR4n+4 : �̄1 = −J1A, �̄2 = −J2A and �̄3 = −J3A. Then, the
restrictions�1, �2 and�3 to S4n+3 of �̄1, �̄2 and�̄3, respectively, are tangent toS4n+3.

Now, suppose that̄ηi , i = 1, 2, 3, is the 1-form onR4n+4 defined byη̄i (X) = h(X, �̄i )
for X ∈ X(R4n+4). Thus,

η̄1 =
n+1∑
i=1

(x2
i dx1

i − x1
i dx2

i − x3
i dx4

i + x4
i dx3

i )

η̄2 =
n+1∑
i=1

(x3
i dx1

i − x1
i dx3

i − x4
i dx2

i + x2
i dx4

i ) (19)

η̄3 =
n+1∑
i=1

(x4
i dx1

i − x1
i dx4

i − x2
i dx3

i + x3
i dx2

i ).

Consider the (1,1)-tensor field̄ϕi on R4n+4 given by

ϕ̄i = Ji − η̄i ⊗ A i = 1, 2, 3.

If v is a tangent vector toS4n+3 at x then(ϕ̄i)x(v) is also tangent toS4n+3. Therefore, the
restrictionϕi of ϕ̄i to S4n+3 is a (1,1)-tensor field onS4n+3. Moreover, from the results of
[26], we deduce that(ϕi,�i , ηi, g)i=1,2,3 is a 3-Sasakian structure onS4n+3, where

g = j ∗h ηi = j ∗(η̄i)
j : S4n+3 ↪→ R4n+4 being the canonical inclusion.

A direct computation proves that the restriction3i to S4n+3 of the 2-vector0i =
1
2(3̄i − A ∧ �̄i ) is tangent toS4n+3. In fact, using (6), we have that (3i,�i) is the Jacobi
structure onS4n+3 associated with the contact 1-formηi .

Consequently, from proposition 3.6, we conclude that the generalized Jacobi structure
of order four associated with the 3-Sasakian structure(ϕi,�i , ηi, g)i=1,2,3 is defined by the
restriction of (

1

4

∑
i

(3̄i ∧ 3̄i)+ 1

2

∑
i

(�̄i ∧ 3̄i) ∧ A, 1

3

∑
i

(�̄i ∧ 3̄i)

)
to S4n+3.

Remark 3.7. In the particular case whenn = 1, the 1-forms given in (19) generate the
basic instanton onS7 (see [6]).

Example 7. (Generalized Jacobi structure on the unit sphere of a generalized Lie algebra)
Let g be a vector space of dimensionm. A skew-symmetric Lie 2n-bracket ong is a
2n-linear skew-symmetric mapping

[, . . . , ] : g× . . .(2n . . .× g −→ g

satisfying the following condition:

Alt[ a1, . . . , a2n−1, [b1, . . . , b2n]] = 0 (20)

for all a1, . . . , a2n−1, b1, . . . , b2n ∈ g. A vector space endowed with such a bracket is called
a generalized Lie algebra of order2n (see [4]).
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Now, on the dual spaceg∗, we define the generalized almost Poisson bracket of order
2n

{, . . . , } : C∞(g∗,R)× · · · × C∞(g∗,R) −→ C∞(g∗,R)

by putting

{f1, . . . , f2n}α = α([(df1)α, . . . , (df2n)α]) (21)

for all f1, . . . , f2n ∈ C∞(g∗,R) andα ∈ g∗. Note that(dfi)α ∈ Tαg∗ ∼= (g∗)∗ ∼= g.
Let 3̄ be the 2n-vector associated with the bracket defined in (21). Then we have the

following.

Proposition 3.8. (g∗, 3̄) is a generalized Poisson manifold of order 2n.

Proof. Let {ei}i=1,...,m be a basis ofg. Denote by{ei}i=1,...,m the dual basis ofg∗ and by
(x1, . . . , xm) the corresponding global coordinates ong∗.

Suppose that [ei1, . . . , ei2n ] =
∑
j C

j

i1...i2n
ej , with Cji1...i2n ∈ R. From (21), we deduce that

3̄ = 1

(2n)!

∑
j,i1,...,i2n

C
j

i1...i2n
xj

∂

∂xi1
∧ · · · ∧ ∂

∂xi2n
. (22)

Moreover, a straightforward computation, using (20), proves that [3̄, 3̄] = 0. Hence(g∗, 3̄)
is a generalized Poisson manifold of order 2n. �

Now, let 〈, 〉 be an inner product ong andg the corresponding Riemannian metric. Note
that, in this case, we can identifyg with g∗. Consequently, via this identification, we have
that the 2n-vector3̄ induces a generalized Poisson structure ong which we also denote by
3̄.

Consider{ei}i=1,...,m an orthonormal basis ofg and (x1, . . . , xm) the corresponding global
coordinates ong. If A is the radial vector field ong and σ is the 1-form ong given by
σ(X) = g(X,A), for X ∈ X(g), then we have

A =
m∑
i=1

xi
∂

∂xi
and σ =

m∑
i=1

xi dxi. (23)

From (22) and (23), we obtain that

LA3̄ = −(2n− 1)3̄. (24)

Denote byS1(g) = {a ∈ g/‖a‖ = 1} the unit sphere ing. Next, we will obtain a generalized
Jacobi structure onS1(g).

Proposition 3.9. Let g be a generalized Lie algebra of order 2n endowed with an inner
product〈, 〉. Suppose that̄3 is the corresponding generalized Poisson structure ong. Then,
the restrictions3 and� to S1(g) of the 2n-vector 3̄′ and the (2n − 1)-vector �̄′ on g

defined by

3̄′ = 3̄− A ∧ iσ 3̄ �̄′ = iσ 3̄
are tangent toS1(g). Moreover, the pair (3,�) defines a generalized Jacobi structure of
order 2n on S1(g).
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Proof. If we identify the open subsetg − {0} of g with the product manifoldS1(g) × R
via the diffeomorphism

F : g− {0} −→ S1(g)× R a 7→
(
a

‖a‖ , ln ‖a‖
)

then we get

F∗(A|g−{0}) = ∂

∂t
(25)

wheret is the usual coordinate onR andA|g−{0} is the restriction of the radial vector field
A to g− {0}. Moreover, the 2n-vector

3 = F∗(3̄|g−{0}) (26)

defines a generalized Poisson structure onS1(g)×R and thus, (S1(g)×R,3) is a generalized
Poisson manifold of order 2n.

Now, we consider the generalized almost Jacobi structure (3′,�′) of order 2n on
S1(g)× R given by

�′ = e(2n−1)t idt3 and 3′ = e(2n−1)t3− ∂

∂t
∧�′. (27)

Using (24), (25) and (27), we deduce that

idt�′ = 0 L∂/∂t�′ = 0 idt3
′ = 0 andL∂/∂t3′ = 0

which implies that3′ and�′ induce a 2n-vector3′ and a (2n−1)-vector�′ on S1(g). On

the other hand, since(3̃′,�′)2n−1 = 3, we conclude, from proposition 2.4, that (3′,�′) is
a generalized Jacobi structure of order 2n on S1(g).

Therefore, the result follows using (25)–(27) and the following facts

F(S1(g)) = S1(g)× {0} F ∗(dt) = i∗(σ )
‖i∗(σ )‖

wherei : g− {0} ↪→ g is the canonical inclusion. �

Remark 3.10. For n = 1, we recover the Jacobi structure onS1(g) obtained by
Lichnerowicz in [33].

Next, we will describe the interesting particular case of a generalized Jacobi structure
on the unit sphere of a simple compact Lie algebrag. First, we will recall the definition of
the skew-symmetric Lie 2n-bracket ong introduced in [3].

Let (g, [ , ]) be the Lie algebra of a simple compact Lie groupG. If B is the Killing
form of g then−B defines an inner product〈 , 〉 on g. We choose an orthonormal basis
{ei}i=1,...,m of g and denote by (x1, . . . , xm) the corresponding global coordinates ong.

If K : g× . . .(n+1 . . .× g→ R is a primitive invariant symmetric polynomial ong, we
consider the skew-symmetric multilineal tensorw : g× . . .(2n+1 . . .× g −→ R given by

w(ei1, . . . , ei2n+1) = wi1...i2n+1 =
∑

σ∈S2n+1

εσK([eσ(i1), eσ(i2)], . . . , [eσ(i2n−1), eσ(i2n)], eσ(i2n+1))

whereεσ is the signature of the permutationσ .
Then, using the inner product〈 , 〉, we can identify upper and lower indices which

allow us to obtain a skew-symmetric Lie 2n-bracket [, . . . , ] : g× . . .(2n . . .× g −→ g on g

defined by (see [3])

[ei1, . . . , ei2n ] =
m∑
j=1

w
j

i1...i2n
ej . (28)
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Therefore, from (22), (23), (28) and proposition 3.9, we deduce that the restrictions toS1(g)

of the 2n-vector3̄′ and the (2n− 1)-vector�̄′ on g given by

3̄′ = 1

(2n)!

∑
j,i1,...,i2n

(
w
j

i1...i2n
−

2n∑
s=1

m∑
k=1

w
j

i1...is−1kis+1...i2n
xkxis

)
xj

∂

∂xi1
∧ · · · ∧ ∂

∂xi2n

�̄′ = 1

(2n)!

∑
j,i1,...,i2n

2n∑
k=1

(−1)k+1w
j

i1...i2n
xj xik

∂

∂xi1
∧ · · · ∧ ∂̂

∂xik
∧ · · · ∧ ∂

∂xi2n

define a generalized Jacobi structure (3,�) of order 2n on S1(g).

4. Hamiltonian vector fields on a generalized almost Jacobi manifold

First, we will introduce the definition of a Hamiltonian vector field on a generalized almost
Jacobi manifold.

If (M,3,�) is a generalized almost Jacobi manifold of ordern, then (M,3) and
(M,�) are generalized almost Poisson manifolds of ordern and n − 1, respectively,
and we will denote byX3f1...fn−1

(respectively,X�
f1...f̂i ...fn−1

) the Hamiltonian vector field
on (M,3) (respectively, (M,�)) associated with the functionsf1, . . . , fn−1 (respectively,
f1, . . . , fi−1, fi+1, . . . , fn−1).

Definition 4.1. Let (M,3,�) be a generalized almost Jacobi manifold of ordern. Suppose
thatf1, . . . , fn−1 areC∞ real-valued functions onM. Then the vector fieldXf1...fn−1 onM
given by

Xf1...fn−1 = X3f1...fn−1
+

n−1∑
i=1

(−1)i−1fiX
�
f1...f̂i ...fn−1

(29)

is called the Hamiltonian vector field associated with the functionsf1, . . . , fn−1.

Remark 4.2. Note that the Hamiltonian vector fieldX1f1...fn−2 is just the vector field

X�f1...fn−2
.

Now, for every pointx of a generalized almost Jacobi manifold (M,3,�) of ordern we
consider the subspaceDx of TxM generated by all the Hamiltonian vector fields evaluated
at the pointx. Thus, we obtain a generalized distributionD onM which will be called the
characteristic distribution.

If n = 2 andM is a Jacobi manifold,D is involutive so that it defines a generalized
foliation onM in the sense of Sussmann [40]. Moreover, ifL is a leaf of the characteristic
foliation then the Jacobi structure (3,�) induces a Jacobi structure onL, andL with the
induced structure is a contact manifold or a l.c.s. manifold (for a detailed study we refer to
[13]).

The things are drastically different forn > 3. In fact, there exist examples of generalized
Poisson manifolds of ordern > 3 such that their characteristic distributions are not involutive
(see [19]).

Next, we will give an example of a generalized Jacobi manifold of ordern > 3 such
that its characteristic distribution is not involutive.
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Example 8. Let 3̄ be the 4-vector onR5 given by

3̄ = x4
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
+ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
∧ ∂

∂x5

where (x1, x2, x3, x4, x5) are the standard coordinates onR5. Then3̄ defines a generalized
Poisson structure of order 4 onR5 (note that [̄3, 3̄] = 0).

A direct computation proves that

X3̄x1x2x3
= x4

∂

∂x4
X3̄x1x2x4

= −x4
∂

∂x3
X3̄x1x2x5

= 0

X3̄x1x3x4
= x4

∂

∂x2
X3̄x1x3x5

= 0 X3̄x1x4x5
= 0

X3̄x2x3x4
= −x4

∂

∂x1
+ ∂

∂x5
X3̄x2x3x5

= − ∂

∂x4

X3̄x2x4x5
= ∂

∂x3
X3̄x3x4x5

= − ∂

∂x2
.

(30)

Consider the generalized almost Jacobi structure (3,�) on R5 given by

3 = x33̄ = x3x4
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
+ x3

∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x4
∧ ∂

∂x5

� = 1

3
idx33̄ =

1

3
x4

∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x4
− 1

3

∂

∂x2
∧ ∂

∂x4
∧ ∂

∂x5
.

Using the results of section 3 (see example 4) we deduce that (3,�) defines a generalized
Jacobi structure onR5 of order four. From (29) we obtain that the Hamiltonian vector field
on (M,3,�) associated with the functionsxi, xj , xk is given by

Xxixj xk = x3X
3̄
xixj xk
+ 1

3xiX
3̄
xj xkx3
− 1

3xjX
3̄
xixkx3
+ 1

3xkX
3̄
xixj x3

. (31)

Using (30) and (31) we deduce that the vector field

[X1x1x2, X1x2x4] = 1

9
x4

∂

∂x1

does not belong toD.
If (M,3) is a Nambu–Poisson manifold of ordern, and D is its characteristic

distribution, thenD defines a generalized foliation onM whose leaves are either points or
n-dimensional manifolds endowed with a Nambu–Poisson structure coming from a volume
form (see [19]; see also [44]).

Now, we will show that the characteristic distribution of a Nambu–Jacobi manifold is
also completely integrable.

Theorem 4.3. The characteristic distribution of a Nambu–Jacobi manifoldM defines a
generalized foliation onM.

Proof. Let (M,3,�) be am-dimensional Nambu–Jacobi manifold of ordern with Nambu–
Jacobi bracket{, . . . , }. If f1, . . . , fn−1, h ∈ C∞(M,R) we deduce from (29) that

Xf1...fn−1(h) = {f1, . . . , fn−1, h} + (−1)nh�(df1, . . . ,dfn−1). (32)
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Using (4) and (32) we have

[Xf1...fn−1, Xg1...gn−1] =
n−1∑
i=1

Xg1...gi−1{f1,...,fn−1,gi }gi+1...gn−1

which implies that the characteristic distributionD is involutive.
Moreover, if x ∈ M and (x1, . . . , xm) is a local coordinate system aroundx then the

distributionD is locally generated by the Hamiltonian vector fieldsXxi1 ...xin−1
andX1xi1 ...xin−2

,
with 16 i1 < · · · < in−1 6 m. Thus, using a result of Lecomte [27] (see also [18], p 414),
we conclude thatD is invariant. This ends the proof of our result. �

Now, we will see that the leaves of the characteristic foliation of a Nambu–Jacobi
manifold have an induced Nambu–Jacobi structure and we will study the nature of such a
structure.

Theorem 4.4. Let (M,3,�) be a Nambu–Jacobi manifold of ordern with n > 3 and
x ∈ M. Suppose thatD is the characteristic foliation ofM and thatL is the leaf ofD
passing throughx. Then (3,�) induces a Nambu–Jacobi structure (3L,�L) on L and we
have:

(i) if 3(x) 6= 0 thenL has dimensionn, 3L is the Nambu–Poisson structure of order
n associated with a volume form onL, and there exists a closed 1-formθL on L such that
�L = iθL3L;

(ii) if 3(x) = 0 and�(x) 6= 0, thenL has dimensionn− 1 and3L = 0; moreover, we
have:

(a) if n > 3 then�L is the Nambu–Poisson structure of ordern− 1 associated with a
volume form onL;

(b) if n = 3 then�L is a symplectic structure onL;
(iii) if 3(x) = 0 and�(x) = 0 thenL = {x} and the induced Nambu–Jacobi structure

is trivial.

Proof. If we take n functionsf1, . . . , fn defined onL, a bracket{f1, . . . , fn}L can be
defined as follows. We extend eachfj , 16 j 6 n, to a functionf̃j onM, and put

{f1, . . . , fn}L(y) = {f̃1, . . . , f̃n}(y)
for all y ∈ L. Since

{f̃1, . . . , f̃n} = Xf̃1...f̃n−1
(f̃n)− (−1)nf̃nX1f̃1...f̃n−2

(f̃n−1)

(see (32) and remark 4.2) we deduce that{f1, . . . , fn}L is independent on the chosen
extensionsf̃i . Of course,{, . . . , }L satisfies the fundamental identity. Thus,{, . . . , }L
is a Nambu–Jacobi bracket onL. Furthermore, it is clear that the structure (3,�) restricts
to L, and that the restriction is just the Nambu–Jacobi structure (3L,�L) on L associated
with the Nambu–Jacobi bracket{, . . . , }L.

Next, we will prove (i), (ii) and (iii).
(i) If 3(x) 6= 0 then, from proposition 2.1, we deduce that there existsθx ∈ T ∗x M such

that

iθx3(x) = �(x). (33)

Moreover, since3 is a Nambu–Poisson tensor (see proposition 2.1) then3(x) is
decomposable. Therefore, using (29) and (33), we deduce that the dimension ofDx is
n. Hence, the dimension ofL is n. This fact implies3(y) 6= 0 for all y ∈ L and,
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consequently3L is the Nambu–Poisson structure of ordern associated with a volume form
on L (see proposition II.8 in [19]).

On the other hand, then-vector3L induces an isomorphism ofC∞(L,R)-modules
#L : �1(L) −→ Vn−1(L) given by #L(α) = iα3L, for all α ∈ �1(L). Thus, there exists
a unique 1-formθL on L such that�L = #L(θL) = iθL3L and, from proposition 3.2, we
conclude thatθL is closed.

(ii)(a) If n > 3, 3(x) = 0 and�(x) 6= 0, then, proceeding as in the above case, we
prove that the dimension ofDx is n − 1. Therefore, the dimension of the leafL is n − 1
which implies that3L = 0 and that�L(y) 6= 0, for all y ∈ L. Thus,�L is the Nambu–
Poisson structure of ordern− 1 associated with a volume form onL (see proposition II.8
in [19]).

(ii)(b) If n = 3, 3(x) = 0 and�(x) 6= 0 then, since� is a Poisson structure, we
deduce that the dimension ofDx is even (see (29)). Hence, the dimension ofL is also
even. Consequently,3L = 0 and�L is a symplectic structure onL (note that if3(y) 6= 0
for some pointy of L then we would obtain that the dimension ofL is three which is a
contradiction).

Next, we will show that the dimension ofL is two. For this purpose, we will prove
that�L(x) is decomposable. Since�L(y) 6= 0 for every pointy ∈ L, we deduce that there
exists an open neighbourhoodUL in L of x such that

�L(df1, df2) 6= 0 (34)

alongUL, wherefi : UL→ R areC∞ real-valued functions onUL.
On the other hand, using (4) and the fact that3L = 0, it follows that

�L(df1, df2)�L = X�L

f1
∧X�L

f2
(35)

whereX�L

fi
is the Hamiltonian vector field on the symplectic manifold (L,�L) associated

with the functionfi . Thus, from (34) and (35), we conclude that�L(x) is decomposable.
(iii) If 3(x) = 0 and�(x) = 0 then all the Hamiltonian vector fields vanish atx.

Hence, the leafL reduces to the pointx. �
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(University of La Laguna) where part of this work was conceived. We also thank the referees
for useful remarks and criticisms that have helped to improve this paper considerably.

References

[1] Albert C 1989 Le th́eoreme de ŕeduction de Marsden–Weinstein en géoḿetrie cosymplectique et de contact
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