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Abstract. The geometry of Nambu—Jacobi and generalized Jacobi manifolds is studied. A large
collection of examples is given. The characteristic distribution generated by the Hamiltonian

vector fields on a Nambu-Jacobi manifold is proved to be completely integrable, and the induced
geometrical structure of the leaves of the corresponding generalized foliation is ellucidated.

1. Introduction

In [37], Nambu proposed a generalization of Hamiltonian mechanics introducirtgyacket
on R" given by

)
Ui S = 5000 €

This approach was later discussed by Bayen and Flato [8] who investigated the relation of
Nambu’s mechanics with the Dirac theory of constraints (see also [24, 36, 38]).

In [41], Takhtajan realized that the bracket given by (1) satisfies the so-called
fundamental identity

U o den - galb =) fen o g U farts &1 Givas - &) @)
i=1

This led him to introduce the notion of Nambu—Poisson manifold as a manifold whose
ring of functions is endowed with a-bracket satisfying (2). However, the fundamental
identity was previously considered by Filippov [14] (see also [34, 35]) in a pure algebraic
context. Recently, Azarragaet al [2, 3] have considered an alternative identity called the
generalized Jacobi identity:

Alt{flv"'afn—lv {g].’""gn}}:O (3)
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for n = 2p even. The generalized Jacobi identity led them to introduce the so-called
generalized Poisson manifolds. Indeed, the ring of functions of a generalized Poisson
manifold carries a-bracket satisfying (3).

Note that the relation between the ring of functiah® (M, R) and the manifoldV is
given by

{.fl""a ﬁl} == A(dfla 7dfn)

where A is an-vector onM. It should be noted that (2) and (3) are in fact integrability
conditions which extend the well known Jacobi identity for Poisson manifolds in the first
case, and the vanishing of the Nijenhuis—Schouten bracket of the Poisson tensor with itself
in the second case. The relationship between these two kinds of brackets is very simple:
any Nambu—Poisson bracket of even order is a generalized Poisson bracket. Furthermore,
Azcarragaet al have recently proved [5] that if we extend the notion of generalized Poisson
manifold by adopting the generalized Jacobi identity (3), where 2p is replaced by
arbitrary (even or oddj, then a Nambu—Poisson bracket of arbitrary order is a generalized
Poisson bracket. However, it should be noted that in the odd case the generalized Jacobi
identity is unrelated to the conditiom| A] = 0, which is trivially satisfied by any odd-order
multivector A.

In some sense, Nambu—Poisson manifolds have nicer geometrical properties than
generalized Poisson manifolds. In fact, the Hamiltonian vector fields define a generalized
foliation such that its leaves inherit a Nambu—Poisson structurex For3 the leaves are
points or they have dimension and the induced Nambu—Poisson structure is given by a
volume form (i.e. the Nambu—Poisson bracket is locally like (1)). For generalized Poisson
manifolds we cannot ensure that the generalized distribution would be involutive in general.

We are assuming that the above brackets are derivations in each argument. However, we
can weaken this assumption, and impose that they are only first-order tirsitierential
operators. In such a case,sif= 2 and we impose the identity (2), or equivalently, the
identity (3), we recover the Jacobi manifolds introduced by Lichnerowicz [32] (see also
[18, 25]) which, recently, have gained much attention (see [12,13, 20, 23, 28, 29])- &
and we impose the identity (2) we obtain the notion of Nambu—Jacobi manifolds [34], and
if we impose (3) we obtain the notion of generalized Jacobi manifolds [39]. They are the
generalizations of Nambu—Poisson and generalized Poisson manifolds, respectively.

The aim of the present paper is to discuss a general geometric framework for Nambu—
Jacobi and generalized Jacobi manifolds. To do this, we consider a generalized almost Jacobi
bracket of order on am-dimensional manifold/ which is given by a skew-symmetric first-
order linearn-differential operator or equivalently by a pdiA, () € V*(M) & V'~ Y(M),
whereV" (M) is the space aof-vectors onM. The pair (A, OJ) is called a generalized almost
Jacobi structure of order, and (M, A, ) is called a generalized almost Jacobi manifold.

If O = 0, then we obtain the generalized almost Poisson structures of mrigioduced

in [19]. By imposing the integrability conditions (2) or (3) we recover the Nambu—Jacobi
manifolds discussed in [34] or the generalized Jacobi manifolds studied in [39]. The relation
between both is once more simple: any Nambu—Jacobi manifold is generalized Jacobi. We
discuss in sectio 3 a lot of new examples of these kind of geometric structures. Thus, we
introduce the notion of compatible Jacobi structures and we prove that if on a mamifold
there exist two compatible Jacobi structures thers a generalized Jacobi manifold of order
four. As a consequence, we deduce that the phase space of a time-dependent Hamiltonian
system is a generalized Jacobi manifold. Another interesting example of generalized Jacobi
manifolds obtained in this section are the 3-Sasakian manifolds. These manifolds appear in
many places in geometry and mathematical physics. In fact, in [15], the authors showed that
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a 3-Sasakian structure on a manifold of dimension seven is characterized by the existence of
at least three independent Killing spinors (see also [7]). Also, in [6], the relation between
the 3-Sasakian structures on the unit sphg&feand the instantons is discussed. More
examples of generalized Jacobi manifolds are the unit spheres of certain types of Euclidean
vector spaces. More precisely, we prove thaf i6 a generalized Lie algebra of ordet 2
endowed with an inner product then the unit spherg i3fa generalized Jacobi manifold of
order 2. In particular, for each primitive invariant symmetric polynomiéalon a simple
compact Lie algebrg, we obtain a generalized Jacobi structure on the unit sphege of

To do this, we use the structure of generalized Lie algebra defined byK (see [3]).
Examples of Nambu-Jacobi manifolds are also given in this section. These examples are
fundamental in the sense that any Nambu—Jacobi manifold is constructed by gluing pieces
like them. Indeed, in section 4, after introducing the notion of a Hamiltonian vector field on

a generalized almost Jacobi manifold, we prove that the characteristic distribution generated
by the Hamiltonian vector fields on a Nambu-Jacobi manifold is involutive (theorem 4.3),
and we obtain that each leaf of this generalized foliation inherits a Nambu—Jacobi structure.
These results globalize the local ones given by Masghal in [34].

2. Nambu—-Jacobi and generalized Jacobi manifolds

Let M be a differentiable manifold of dimensian. We will use the following notation:
e C®(M,R) is the algebra ofC* real-valued functions o/
o X(M) is the C* (M, R)-module of vector fields o/,
e V¥(M) is the space ok-vectors onM;
e QF(M) is the space ok-forms onM.
Moreover, our conventions for the exterior calculus are those of [43].
A generalized almost Jacobi bracket of ordeion M is ann-linear mapping

{,....}:C®M,R) x ... .. x C®°(M,R) — C®(M,R)

satisfying the following properties.
(i) Skew-symmetry:

{flv e fn} = Sd{f(f(l)s e fa(n)}

forall f1,..., f, € C*(M,R) ando € &,, where®,, is the group of the permutations of
ordern andeg, is the signature of the permutatien
(i) {,...,} is a first-order linear differential operator oM with respect to each

argument, i.e.

{f1g1, fo, .., fu} = fulgn, foo oo os b &l fa oo fo)} — frgddds for oo fu)

for all f1, g1, f2, ..., fn € C®°(M,R).
If {,...,} is a generalized almost Jacobi bracket of ordethen we can define an
n-vector A and an ¢ — 1)-vector[d as follows

D(dflv ey dfnfl) = {11 flv s fnfl}
A@fr - df) = b+ D (D O dfi L df)

i=1
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for all f1,..., f, € C®(M,R). Conversely, any pai(A, ) € V'(M) @ V'~1(M) defines
a generalized almost Jacobi bracket of ordergiven by
(o fd = A@fr . df) + ) (=D AOMfL . dfi L df).
i=1
Thus, the pairA, 0) € V(M) ® V'"1(M) is called ageneralized almost Jacobi structure
of order n and (M, A, ) is a generalized almost Jacobi manifoldif O = 0, then we
obtain ageneralized almost Poisson structure of orde(see [19]).

A more rich structure can be obtained by adding integrability conditions to the associated
generalized almost Jacobi bracket. ., }. In fact, two different integrability conditions may
be assumed.

(iii 1) (Fundamental identity

oo forfgn gl = gn - it A f1 s fot &b 810 8) @
i=1

for all f1,..., fun-1,81,...,8 € C®(M,R). In this caseJ{,...,} is called aNambu—
Jacobi or n-Jacobi bracket and (M, A, O) is a Nambu—Jacobi manifold of order (see
[34]). Note thatif0=0,{, ..., } is a derivation in each argument and, therefore, it defines
a Nambu—Poisson brackeand (M, A) is aNambu—Poisson manifold of order (see [41]).

In [34], the authors have proved the following results.

Proposition 2.1. Let (M, A,[J) be a Nambu—Jacobi manifold of ordern > 2. Then
(i) A is a Nambu—Poisson structure #h of ordern.
(i) O is a Nambu—Poisson structure ah of ordern — 1.
(iii) For every x € M such thatA(x) # O, there existsd, € T M such that
ig, A(x) = O(x).
(V) If f1,..., fu_2 € C®°(M,R) we have
L o A= 0

f1fn—-2

whereL is the Lie derivative operator o and X?.fH is the vector field defined by

XS . =0dfi,....dfp2d)  forall h e C¥(M,R).

Remark 2.2. Let A be a generalized almost Poisson structure of onden a manifoldM
and fi, ..., fy—1 € C*(M,R). Then, the vector field(;‘lme given by

Xp.p, () = Adfy, ... dfy1,dh)
for all h € C*°(M, R) is called theHamiltonian vector fieldassociated with the functions
fio -0 fa-1 (see€ [19)).

(iii ) (Generalized Jacobi identi}y

Alt{fi, ..., fa-1. {81, ..., &}} =0 (5)

forall f1,..., fu-1,81,...,8: € C®(M,R). In this case{, ..., } is called ageneralized
Jacobi bracket and (M, A, ) is a generalized Jacobi manifold of order (see [39]). If
O =0then{,...,} is a derivation in each argument and (A) is a generalized Poisson
manifold (see [2, 3,5, 19]).

Forn even, the integrability conditions of the generalized Jacobi structure are given by
the following result (see [39]).
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Proposition 2.3. Let (M, A, ) be a generalized almost Jacobi manifold of even order
n =2s. Then M, A,0) is a generalized Jacobi manifold if and only if

[A,A] =22s — DA AO and [A,01=0
where [, ] denotes the Schouten—Nijenhuis bracket.

If n = 2 then the fundamental identity and the generalized Jacobi identity coincide
and, in such a caseM, A, ) is a Jacobi manifold [32]. Interesting examples of Jacobi
manifolds are contact manifolds and locally conformal symplectic manifolds which we will
describe below.

Let M be a (21 + 1)-dimensional manifold ang a 1-form onM. We say that; is a
contact 1-form ifnp A (dn)™ # O at every point. In such a cas#/(n) is called acontact
manifold (see, for example, [9]). The Darboux theorem ([9]) states that around every point
of M there exist canonical coordinatesd4?, ..., ¢", p1, ..., p») Such that

n=dt— > pidg’.
i=1
A contact manifold §/, ) is a Jacobi manifold. In fact, we define the 2-vectoon M by

Ala, B) = dn(o~Hw), b H(B)) (6)
for all o, B € QY(M), whereb : ¥(M) — QY(M) is the isomorphism ofC>®(M, R)-
modules given by(X) = iy dn + n(X)n. The vector fieldd is just the Reeb vector
field O = b~%(n) of (M, n). We remark thatjn = 1 andi7dy = 0. Using canonical
coordinates we get
d d
= — i — O=—.
Z( i ) e ot
An interesting class of contact manifolds are the Sasakian manifolds which we will describe
next.
Let (M, ., n, g) be a (Zn + 1)-dimensionaklmost contact metric manifoldhat is

(see [9]),¢ is a (1,1) tensor fieldy is a 1-form,] is a vector field ang is a Riemannian
metric onM such that

¢?’=—ld+n®0 n(@) =1 g(pX, Y) = g(X,Y) — n(X)n(Y)

for all X,Y € X(M), Id being the identity transformation. Then we hawyé]) =
noe =0 andn(X) = g(X,0), for all X € X(M). The fundamental2-form & of M is
defined by® (X, Y) = g(X, ¢Y), and the (2 + 1)-form n A " is a volume form onM.
The almost contact metric is said to be ([10fprmal if [ ¢, ¢] + dn ® O = 0 andSasakian
if it is normal and @& = 2. If (M, ¢,[0, n, g) is a Sasakian manifold therf, n) is a
contact manifold.
Other examples of Jacobi manifolds are the locally conformal symplectic manifolds.
An almost symplectic manifolds a pair (M, ), where M is an even-dimensional
manifold and2 is a non-degenerate 2-form aW. An almost symplectic manifold is
said to belocally conformal symplectic (l.c.s.jf for each pointx € M there is an open
neighbourhoodJ such that de=>Q) = 0, for some functioro : U — R. If U = M
then M is said to be globally conformal symplectic (g.c.smanifold (see, for example,
[42]). An almost symplectic manifoldM, 2) is I.(g.)c.s. if and only if there exists a closed
(exact) 1-formw such that

dQ =w A Q. @)
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The 1-formw is called theLee 1-formof M. It is obvious that the l.c.s. manifolds with
Lee 1-form identically zero are just the symplectic manifolds. We define a 2-vactord
a vector fieldd by
A, p) =07 @), b7 (B)  O=b"w) (®)
for all a, B € QY M), whereb : ¥X(M) — QY(M) is the isomorphism ofC>®(M, R)-
modules given by(X) = ixQ2. Then (M, A, ) is a Jacobi manifold.
Moreover, around every point of/ there exist canonical coordinateg(..., g™,
p1, ..., pm) @and a local differentiable functios such that
. d .0
Q=¢Y dg A dp, w:do=2<idq'+aidpi>
; q Di

i i

a a do 0 do 0
A=e"Y [—Ar— D=e" Y (== -2 )
— \dq'  dpi — \dp; dq'  3q' dp;
Finally, a very simple but interesting Jacobi structure is that provided by a vectorfield
on a manifoldM, i.e. the Jacobi structure is given b & 0, (). This structure is closely
related with Virasoro algebras (see [17]).

Now, let (M, A, 0) be a generalized almost Jacobi manifold of even order = 2s.
For eachp € R — {0}, we define onM x R the Z-vector

— ad
(A, D), :e*P’A+e*P’EAD 9)

wherer is the usual coordinate dR. Then, from proposition 2.3 and the properties of the
Schouten—Nijenhuis bracket, we conclude the following.

Proposition 2.4. (A, (p/(2s — 1))0) is a generalized Jacobi structure dhif and only if
(A, 0), is a generalized Poisson structure dnx R.

Remark 2.5. If (M, A, ) is a Jacobi manifold then the Poisson manifalfix R, (A, C)1)

is called the Poissonization of the Jacobi manifafd(see [20]) or the tangentially exact
Poisson manifold associated witf (see [32]). For a contact manifold4, ), (m)l

is just its symplectification (see [31]), i.e. the Poisson structure defined by the symplectic
form

Q=€dp+€dAn. (10)
In particular, when ¥, ¢, (], n, g) is a Sasakian manifold we can define on the product
manifold M x R a complex structurg as follows (see [9]):

1 d

J=@o(pr) — E(prz)*(dt) ®U+2(pr)n® o
where pf : M xR — M and pg : M x R — R are the canonical projections onto the
first and second factor, respectively. Moreover, the Riemannian metii€ »iR defined by

h = € (2pri(g) + 3pr;(dr) ® pry(dr))
is compatible withJ and a direct computation proves that thatder 2-form of the Hermi-
tian structure (, k) is just the symplectic 2-forn given by (10). Therefore, we conclude
that the symplectification of a Sasakian manifold is @&ler manifold. Remember that the
Kahler 2-form of a Hermitian structure/ (k) on a manifoldN is the 2-formQ defined by
Q((X,Y)=h(X,JY), and thatVN is said to be Khler if Q is closed.

The relationship between Nambu—Jacobi and generalized Jacobi manifolds is given in
the following result
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Proposition 2.6. Every Nambu—Jacobi manifold is a generalized Jacobi manifold.

Proof. In fact, let M be a Nambu—Jacobi manifold with Nambu-Jacobi bra¢ket. , }.
Using (4) and the antisymmetry of the bracket. ., }, we obtain

Alt{flv AR ] fnfla {glv AR ] gl‘l}} - n(_l)n_lAlt{flv AR ] fnfla {glv AR ] gl‘l}}
which implies that Al{f1, ..., fu-1,{g1, ..., &:.}} = 0. O

3. Examples of Nambu—Jacobi and generalized Jacobi manifolds

In this section, we will describe some examples of Nambu—Jacobi and generalized Jacobi
manifolds.

First, we will give some examples of Nambu—Jacobi manifolds. Some of these examples
have been obtained in [34].

Example 1. Let (M, A) be a Nambu—Poisson manifold of order n > 2. If f €
C*(M,R) thenigs A is also a Nambu—Poisson structure &n(see [19]).
On the other hand, sinc& is locally decomposable (see [16]) then we have

A
Xo o ANA=0 (11)
for all f1,..., fu_1, WhereX]{;“ / is the Hamiltonian vector field onM, A) associated

with the functionsf, ..., f,l,lf nflhus, from (4) and (11), we obtain thaA (igrA) is a
Nambu—Jacobi structure of order
Since a closed 1-form is locally exact, the above result can be generalized as follows.

Proposition 3.1. If (M, A) is a Nambu—Poisson manifold of ordern > 2, andé is a
closed 1-form onM then (A, igA) is a Nambu—Jacobi structure of ordeon M.

Next, let M be an oriented manifold of dimensien and choose a volume formon
M. Denote byA, then-vector onM given by

Aydfa, ..., df)v=dfain---Adfy, (12)

for all f1,..., f, € C*°(M,R). Then (M, A,) is a Nambu—Poisson manifold of order
(see [16] and [19]). Moreover, we have the following.

Proposition 3.2. Let A, be the Nambu—Poisson tensor of ordeassociated with a volume
form v on an oriented manifold/ of dimension:. Suppose that is a 1-form onM. Then,
the generalized almost Jacobi manifold (A, igA,) is @ Nambu—Jacobi manifold if and
only if 0 is a closed 1-form.

Proof. If 6 is a closed 1-form oM, it directly follows from proposition 3.1 that,, igA,)
is @ Nambu—Jacobi structure at.

Conversely, suppose thais a 1-form onM such that {4, A,, igA,) is a Nambu—Jacobi
manifold of ordern. From (12), we deduce that there exist local coordinates. (., x,)
such that

ad ad

Ay=—AN--A .
0x1 0x,
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Moreover, if6 = 6* dx; then, from proposition 2.1 (iv) and using the Hamiltonian vector
field

XioA"A R — (_1)l1+i+j in _ Qli
oo Xy n ax; dx;
we obtain that
967 90!
— — — A, =0
8x,~ 8Xj
foralli,j=1,...,n. Hence, d = 0. O

Example 2. Let (M, A) be a Nambu—Poisson manifold of ordern > 2 (respectively,
a symplectic manifold of dimension two). Proceeding as in example 1, and using (4) and
the fact thatA is locally decomposable, we deduce that the pair(Qis a Nambu—Jacobi
structure of orden + 1 (respectively, of order three) a¥.

Next, we will give some examples of generalized Jacobi manifolds.

Example 3. Let [0 be a (22 — 1)-vector on a manifold/. Then, from proposition 2.3 we
deduce that () is a generalized Jacobi structure of orderdh M.

Example 4. Let A be a generalized Poisson structureMrof order 2. If f € C*°(M, R)
then

[fA, fA] =2igr A A (fA). (13)
On the other hand, we can define a homomorphism G5f (M, R)-modules #
Q¥-1(M) — X(M) as follows:
Har A Aag_1)(B) = A, - .., az,-1, B) TOr ag, ..., a1, B € QYM).
Now, consider the homomorphism @f°(M, R)-modules# : QM) — V<@=D ()
given by

#(or) (a1 Qk(2n-1)) = " Z Eo 0 (H(Ag(1) A -+ A g 2n—-1))
9 ey k —_ — T A A1~ (o2 (o2 tce (o2 fl— 9
T @ -, @ @y
X ooy B Qo (k-1 @i-DD A A O (k(20-1))))
for all « € QX(M) and s, ..., i1y € QUM), where Sip,-1) is the group of the

permutations of ordet(2n — 1) ande, is the signature of the permutation(see [22]).
Then we have#(da) = [A, #a], for all « € QF(M) (see [22] for a proof). Taking
a = df we conclude that

[A,igrA]l = 0. (14)

Thus, using (13), (14) and proposition 2.3, we deduce tlfat,(1/(2n — 1))igrA) is a
generalized Jacobi structure of order @ M.

Remark 3.3. If A is a symplectic structure anfl = e is a positive function then the
corresponding Jacobi structurg A, iqsA) is g.c.s. (see section 2).

Example 5. (Bihamiltonian manifolds First, we will introduce the notion of compatible
Jacobi structures. This definition extends the definition of compatible Poisson structures.
Two Jacobi structuresa(;, (1) and (A, O0,) on a manifoldM are said to beompatible

if (A1+ Ao, Op + ) is a Jacobi structure oM.
A direct computation, using (9), proposition 2.3 and remark 2.5, shows the following
result.
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Proposition 3.4. Let (A1, ;) and (A2, ) be two Jacobi structures on a manifald.
Then the following statements are equivalent:

(i) the structures 41, [J;) and (A, [J,) are compatible;

(i) [A, A2 =01 A A+ A A and,ﬁDlAz + £|:|2A1 =0;

(iii) the Poissonizations

(A Opr=e"Ar+ e—’% ADp (hpDr=e'Ag+ e—'% A D
are compatible Poisson structures on the product maniple R.
Now, suppose that;, [J;) and (A2, O,) are compatible Jacobi structures on a manifold
M. Denote byA and by the 4-vector and the 3-vector av given by
A=ALAA> O=0O1 A A+ 0O A Ax. (15)
Using proposition 3.4(ii), we have
[A, Al =4A ADO [A,O0=0.

Thus, M, A, 20) is a generalized Jacobi manifold of order 4 (see proposition 2.3).

Remark 3.5. A direct computation proves that the 4-vector
(A, D =e A+ e_z'% AO

is just
(A, D)2 = (Ax, 01 A (Ag, D)s.

Thus, from proposition 2.4, we deduce that (x R, (m)z) is a generalized Poisson
manifold of orde[ four_. In fact, ifA; and A, are two compatible Poisson structures on a
manifold N then A1 A A5 is a generalized Poisson structure of order fouNoisee [21]).

Next, we will describe a particular case, a generalized Jacobi structure on the phase
space of a time-dependent Hamiltonian system.

As is well known, the phase space of a time-dependent Hamiltonian system is a product
manifold M = R x T*Q, whereT*Q is the cotangent bundle of a differentiable manifold
Q of dimensionm. Denote by, the Liouville 1-form of 7*Q and by, = —di, the
canonical symplectic structure di Q (see [30] for details).

Ifpry : RxT*Q — Rand pg: R x T*Q — T*Q are the canonical projections
onto the first and second factor, respectively, then a direct computation proves that

n = pry(ds) — pry(xo)
is a contact 1-form ofR x 7*Q. In fact, if (¢*, ..., ¢™, p1,..., pn) are fibred coordinates

on T*Q then
m=dr—) pidg'.
i=1

Thus, if (A1, ;) is the associated Jacobi structure with the contact 1-fprmwve have

n ad ad ad d
A]_:Z(—I—FP,E)/\— D]_:E (16)
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On the other hand, we also can defineRink 7*Q a Poisson structurd, as follows. Let
f e C®MR x T*Q,R). Then, we consider the vector fiem)% which is characterized by
the following conditions: '

of

(PN (XH =0 ixz(pr)"(Qe) = df — —-pri(dn.

Now, we define the bracket of two functiorfsand g by
{f. 8)2 = Pr(Qp) (X7, X2).
Thus,(R x T*Q, {, }2) is a Poisson manifold (see, for instance, [1, 11]). Moreoven,if

is the associated Poisson structure then the Hamiltonian vectomﬁélcd)f a function f is

XJ%. The structureA is just the Poisson structure & x T*Q defined by the canonical
cosymplectic structure oR x T7*Q (for the definition and properties of cosymplectic
manifolds, see [1, 11, 30]).

In fibred coordinatest(qt, ..., g™, p1, ..., pm), We have
2.9 d
Ay = AT (a7)
i=1 aq a[’l

Using (16), (17) and proposition 3.4(ii), we deduce that the Jacobi structyré ;) and
the Poisson structura, are compatible. Therefore, K and are the 4-vector and the
3-vector onR x T*Q given by

A=A AAy=) L N N
A VAT 7Y R TR PYR P

d ad d
O=01AAp = — AN— A —
— 0t dq'  Op;
then we conclude that the paiA(%D) defines a generalized Jacobi structure of order four
onR x T*Q.

Example 6. (3-Sasakian manifolgsAn interesting example of generalized Jacobi manifold
are the 3-Sasakian manifolds [26] (see also [6, 7, 10, 15]).

First, we recall the definition of hyperdfler manifold which will be useful in the
following.

A hyper-Kahler manifold is a differentiable manifoldM of dimension 4 with a
Riemannian metrig and three complex structurel, J», J3 compatible withg and such
that:

(i) the complex structures satisfy the quaternionic relationsji.es JioJ, = —Jo0J3;

(ii) the Kahler forms<;, defined byQ; (X, Y) = g(X, J;Y) for all X,Y € X(M), are
closed.

If we consider the Poisson structure; associated with the &hler form €;, then
[A;, A;] = O for all i, j, that is, A1, A, and Az are compatible (see [21]). Thus, the
fundamental 4-vector

A =1_\1/\1_\1+1_\2/\1_\2+1_\3/\[_\3
defines a generalized Poisson structure of order #ofsee [21]).
A 3-Sasakian manifolds a (4 + 3)-dimensional Riemannian manifold/(, g) that

admits three distinct Sasakian structufes [J;, n;, g)i=1.2,3 Whose vector field&;, (y, s
are mutually orthogonal and satistyl{), O, 2] = 2¢,0,(3), for all o € G3 (see [10, 26]).
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If (¢:i, O;, ni, g)i=1.2,3 iS @ 3-Sasakian structure a@d then it can be proved (see [26])
that (¢;, O, n:, g)i=1,2,3 IS an almost contact 3-structure, that is
Ne(s2) =0 Vo) = eco(3) No@) © Po@ = EaNo(3)
Vs1) ©Po = No@ ® L) + &5053)
for all o € Gs.

(18)

Proposition 3.6. Let (¢;, O, n;, g)i=123 be a 3-Sasakian structure on a manifaid
and suppose thatA(, ;) is the associated Jacobi structure with the contact 1-fgrm
i =1,2,3. Then we have that:

(i) the structures 41, (1), (A2, O2) and (A3, (03) are compatible;

(i) if A and are the 4-vector and the 3-vector &h given by

3 3
A:ZA,'/\A,' D:ZD[/\A[
i=1 i=1
then (A, 20J) is a generalized Jacobi structure dhof order four.

Proof. Using (18) and remark 2.5, we obtain thaf & R, Ji, Jo, J3, h) is a hyper-Kahler
manifold, where

1 d
Ji = @i o (Prys« — é(pl’z)*(dt) ® O; + 2(pr)*(n) ® F»

1
h=¢(@2pr(g) + Epr’;(dt) ® pry(dr))

and py : M x R — M and py : M x R — R denote the canonical projections onto the
first and second factor, respectively.

Now, let Q; be the Kahler 2-form of the Khler structure J{;, #) and letA; be the
associated Poisson structure wdth, i = 1, 2, 3. Since M x R, ;) is the symplectification
of the contact manifoldM, n;), we have that

Ar=@AnOn  i=123
Thus, using proposition 3.4(iii)), we deduce that the structures [(;), (A, [Jy) and

(A3, O3) are compatible. This proves (i).
(i) follows from (i) and proposition 3.4(ii). O

We will describe an interesting particular case, a generalized Jacobi structure on the
spheres#+3,

On R*+4 we consider the usual hyperaKler structure fu, Jo, J3, h). Let Q; be the
Kahler 2-form of the Hermitian structurd;, /), i = 1, 2, 3. Then the Poisson vectors;,
A, and A3 associated witlf2,, 2, and Q3 respectively, are given by

n+1

- Z 0 a a9 a

A= = (8)(.2 A axl + ax? 4 E)x.s)
i= i i i i

n+1
- 0 il 0 0
Az = —S AT+ =A—
2 ;(Zbc? axl  9x? 3xi4>
n+1l

- 0 el el el

As=) |G Ar—F+—=/r—>
3 = <8xi4 ax} Z)xf‘ 8xi2>

where ¢}, x2, x3, x) are the usual coordinates @f"+4.
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On the other hand, let be the radial vector field oR***4, that is

Define the vector fields o®*'*4 : O, = — /14, Uy = —JoA and; = —J3A. Then, the
restrictionsJy, O, and 3 to $*+2 of O;, O, ands, respectively, are tangent &§+3.
Now, suppose thaj;, i = 1, 2, 3, is the 1-form orR*** defined by#j; (X) = h(X, ;)
for X e X(R**4). Thus,
n+1
nm= X:OCi2 de! — xtde? — 3ot 4 xtdid)
i=1
n+1
o = Z(xi3 del — xtde? — xtde? + xZdx ) (19)
i=1
n+1
N3 = Z(xi4 d)ci1 — x,-l dxl-4 — xiz dx,?’ + x,»3 dxiz).
i—1

Consider the (1,1)-tensor fielgy on R*+4 given by
pi=Ji—-nmQ®A i=123.
If vis a tangent vector t6*'*2 at x then (g;).(v) is also tangent t&**+3. Therefore, the

restrictiong; of ¢; to S#+3 is a (1,1)-tensor field o5*'+3. Moreover, from the results of
[26], we deduce thaty;, [, n;, g)i—1.2.3 iS @ 3-Sasakian structure ¢i**+3, where
g=Jjh ni = j* ()
j o 8§43 < R¥+4 peing the canonical inclusion.
_A direct computation proves that the restrictidn to S§4+3 of the 2-vectorl’; =
2(A; — A A L) is tangent tos*+3. In fact, using (6), we have that(, () is the Jacobi
structure ons*'+2 associated with the contact 1-form.

Consequently, from proposition 3.6, we conclude that the generalized Jacobi structure
of order four associated with the 3-Sasakian structurel’;, n;, g)i=1.23 is defined by the

restriction of
12([\ A[\)+1Z(E AA)AA 12(@ AA)
4 - 1 l 2 - 1 1 ’ 3 - 1 1
to S4n+3_

Remark 3.7. In the particular case whem = 1, the 1-forms given in (19) generate the
basic instanton o8’ (see [6]).

Example 7. (Generalized Jacobi structure on the unit sphere of a generalized Lie aljebra
Let g be a vector space of dimensiom. A skew-symmetric Lie 2-bracket ong is a
2n-linear skew-symmetric mapping

[....]:gx..%7. . . xg—g
satisfying the following condition:

Alt[a, ..., az-1,[b1,...,b2,]] =0 (20)
forall as,...,az,1,b1,...,bs €g. Avector space endowed with such a bracket is called

a generalized Lie algebra of orde2n (see [4]).
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Now, on the dual spacg*, we define the generalized almost Poisson bracket of order
2n

{7 . '?} : Coo(g*9R) X e X Coo(g*yR) i Coo(g*’R)
by putting
{f1, .-y fade = a([(AfDa, - - -, (Af20)a]) (21)

forall fi,..., fa. € C*(g*, R) and € g*. Note that(df;), € T.g" = (g")* = g.
Let A be the 2-vector associated with the bracket defined in (21). Then we have the
following.

Proposition 3.8. (g*, A) is a generalized Poisson manifold of order. 2

~~~~~~~~~~

(x1, ..., xs) the corresponding global coordinates gn
Suppose thatef,, ..., e, ] =Y, C/ _;, ej, with ¢/, e R. From (21), we deduce that
_ 1 ; d d
A=— Cl  xi— A A . 22
(2n)! j.i;iz e’ dxiy 9xi,, (@2)

Moreover, a straightforward computation, using (20), proves that\] = 0. Hence(g*, A)
is a generalized Poisson manifold of order. 2 |

Now, let(, ) be an inner product o andg the corresponding Riemannian metric. Note
that, in this case, we can identifywith g*. Consequently, via this identification, we have
that the 2-vector A induces a generalized Poisson structurggavhich we also denote by
A

coordinates org. If A is the radial vector field oy and o is the 1-form ong given by
o(X) = g(X, A), for X € X(g), then we have

A=iljx,-a% and 0=Zx,~dx,-. (23)

From (22) and (23), we obtain that
LaA = —(2n — DA. (24)
Denote byS'(g) = {a € g/|la| = 1} the unit sphere in. Next, we will obtain a generalized

Jacobi structure o8 (g).

Proposition 3.9. Let g be a generalized Lie algebra of order ndowed with an inner
product(, ). Suppose thah is the corresponding generalized Poisson structurg. dFhen,
the restrictionsA and O to S*(g) of the Zi-vector A’ and the (2 — 1)-vectorﬁ ong
defined by

N=A-ANi,A 0 =i, A

are tangent tos(g). Moreover, the pair 4, ) defines a generalized Jacobi structure of
order 21 on Si(g).
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Proof. If we identify the open subset — {0} of g with the product manifoldst(g) x R
via the diffeomorphism

Fig—1{0) — SY@) xR ar (HZ—”,InHaH)

then we get
d
Fi(Ajg-10) = (25)
wheret is the usual coordinate dR and A ;g is the restriction of the radial vector field

A to g — {0}. Moreover, the 2-vector
A = F.(Ag—_(0) (26)

defines a generalized Poisson structuresti) x R and thus, §1(g) xR, A) is a generalized
Poisson manifold of orders2

Now, we consider the generalized almost Jacobi structare’) of order Z on
S1(g) x R given by

ad
Q/ — e(Zn—l)ll'dIA and A/ — e(2n—1)tA _ E A Ql' (27)
Using (24), (25) and (27), we deduce that
i =0 Lypd =0 igA"=0andLyA'=0

which implies thatA’ and’ induce a 2-vector A’ and a (2 — 1)-vector(l)’ on S(g). On

the other hand, sincer’, [1'),,_1 = A, we conclude, from proposition 2.4, that’( (') is
a generalized Jacobi structure of orderch S(g).
Therefore, the result follows using (25)—(27) and the following facts

X i*(0)
F(S*(g)) = S*(g) x {0} F*(dr) = —
l7* (o)l
wherei : g — {0} < g is the canonical inclusion. O
Remark 3.10. For n = 1, we recover the Jacobi structure dft(g) obtained by

Lichnerowicz in [33].

Next, we will describe the interesting particular case of a generalized Jacobi structure
on the unit sphere of a simple compact Lie algefpréirst, we will recall the definition of
the skew-symmetric Lie/2bracket ong introduced in [3].

Let (g,[, ]) be the Lie algebra of a simple compact Lie gradp If B is the Killing
form of g then —B defines an inner produdt ) on g. We choose an orthonormal basis
{ei}i=1...m Of g and denote byx, ..., x,,) the corresponding global coordinates @n

If K:gx...mt1 _ xg— Ris a primitive invariant symmetric polynomial an we
consider the skew-symmetric multilineal tensor. g x ...+l .. x g — R given by

w(eiv CER ei2u+1) = Wiy...igy11 = Z EUK([eO'(il)’ eG(iz)]’ cey [eff(izn—l)f eU(izn)]’ ea(i2n+1))
0€Gomt1
wheree, is the signature of the permutation
Then, using the inner produdt ), we can identify upper and lower indices which
allow us to obtain a skew-symmetric Liebracket [...,]:gx...% ... xg— gong
defined by (see [3])

leiys.-osei,] = Z wijlmibej. (28)
=1
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Therefore, from (22), (23), (28) and proposition 3.9, we deduce that the restrictishgyo
of the Zi-vector A’ and the (2 — 1)-vector(]' on g given by

m

o1 i ’
AN = m Z ( 11 RPN ZZ l1 dg1kigin.. lQ”kalA>xja A A axizn

Jritsenion s=1 k=
1 o1y, 9 £} d
0= (2n)! Z Z( Dy, ’Z”XJX"B SRS Ax;, Ao dx;
Joltseesion k= k 2n

define a generalized Jacobi structure [J) of order 2 on S'(g).

4. Hamiltonian vector fields on a generalized almost Jacobi manifold

First, we will introduce the definition of a Hamiltonian vector field on a generalized almost
Jacobi manifold.

If (M, A,0) is a generalized almost Jacobi manifold of orderthen (M, A) and
(M,O) are generalized almost Poisson manifolds of ordeand n — 1, respectively,
and we will denote be 1., (respectively, XD ) the Hamiltonian vector field
on (M, A) (respectively, M ) associated W|th the functlonﬁl ., fn_1 (respectively,
fis oo ficts fists ey fam)-

Definition 4.1. Let (M, A, ) be a generalized almost Jacobi manifold of ondeBSuppose
that f1, ..., f,—1 areC* real-valued functions oM. Then the vector field,, r , on M
given by

Xfofir = Xp gyt Z( VX L (29)
is called the Hamiltonian vector field associated with the functins. ., f,_1

Remark 4.2. Note that the Hamiltonian vector fiel&y., f , is just the vector field

|
Xfl a2

Now, for every pointx of a generalized almost Jacobi manifold (A, O) of ordern we
consider the subspade, of T, M generated by all the Hamiltonian vector fields evaluated
at the pointx. Thus, we obtain a generalized distributibhon M which will be called the
characteristic distribution

If n =2 andM is a Jacobi manifoldD is involutive so that it defines a generalized
foliation on M in the sense of Sussmann [40]. MoreoverLifs a leaf of the characteristic
foliation then the Jacobi structuré\ ([1) induces a Jacobi structure dn and L with the
induced structure is a contact manifold or a I.c.s. manifold (for a detailed study we refer to
[13]).

The things are drastically different far> 3. In fact, there exist examples of generalized
Poisson manifolds of order > 3 such that their characteristic distributions are not involutive
(see [19)).

Next, we will give an example of a generalized Jacobi manifold of order 3 such
that its characteristic distribution is not involutive.
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Example 8. Let A be the 4-vector oiR® given by
- ad 0 0 9 ad 0 0 d

A=x4— AN —AN— A —
0x1p Odxp 0x3 Jdxg 0x2 0x3 0Xx4 OXs

where 1, x2, x3, x4, x5) are the standard coordinates BA. ThenA defines a generalized
Poisson structure of order 4 &P (note that A, A] = 0).
A direct computation proves that

_ 9 _ P _
A . A _ A —
XxleX3 - x4a_x4 XX1X2X4 - _X48_)63 X1X2X5 — O
_ 9 _ _
Xé\lx&m:x“'_ X;\xx =0 X)/c\xx =0
) 9x7 1X3X5 1X4X5
(30)
R 3 0 R 9
Xxxx:_x4_+_ Xxxxz__
2X3X4 dx1 dxs 2X3X5 dx4
i _ 0 Aoo__ 0
X2X4X5 — 8X3 X3X4X5 — _8_X2
Consider the generalized almost Jacobi structire’{) on R® given by
- 0] a ad ad ad ad d d
A=x3A =x354— N —A—A—+xX3— A — A — A —
axl 8)62 8)63 BX4 8)62 BX3 3)C4 3)(5
0 1. i 1 9 A ad ad 190 a ad
= =i =Xp— AN—A——=— A — A —.
3 drs 3 48X1 axZ 3)64 3 3)62 3)(4 aX5

Using the results of section 3 (see example 4) we deduce thafX defines a generalized
Jacobi structure oRR® of order four. From (29) we obtain that the Hamiltonian vector field
on (M, A, 0) associated with the functions, x;, x; is given by

+ %x,-X[—\ - %x_,-X[\ + %ka[\ (31)

A
Xivin, = X3X .
XiXjXk 3 XjXkX3 Xi X X3 XiXjX3

Using (30) and (31) we deduce that the vector field

1 0
[X 10000 Xtoorg] = zXa7——

9 8x1
does not belong t®.

If (M, A) is a Nambu—Poisson manifold of order and D is its characteristic
distribution, thernD defines a generalized foliation ad whose leaves are either points or
n-dimensional manifolds endowed with a Nambu—Poisson structure coming from a volume
form (see [19]; see also [44]).

Now, we will show that the characteristic distribution of a Nambu—Jacobi manifold is
also completely integrable.

Theorem 4.3. The characteristic distribution of a Nambu—Jacobi maniftdddefines a
generalized foliation o/

Proof. Let (M, A, ) be am-dimensional Nambu-Jacobi manifold of orderith Nambu—
Jacobi bracket, ..., }. If f1,..., fu_1,h € C*°(M,R) we deduce from (29) that

Xf1fn,1(h) = {flv MR fn—lv h} + (_l)nhlj(dfla sy dfn—l)~ (32)
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Using (4) and (32) we have

which implies that the characteristic distributi@nhis involutive.

Moreover, ifx € M and (x, ..., x,,) IS a local coordinate system aroumdthen the
distributionD is locally generated by the Hamiltonian vector fieJXfLs,l___xik1 anXmX[l,,,x/nfz,
with 1 <i; <--- <i,_1 < m. Thus, using a result of Lecomte [27] (see also [18], p 414),
we conclude thaD is invariant. This ends the proof of our result. O

Now, we will see that the leaves of the characteristic foliation of a Nambu—Jacobi
manifold have an induced Nambu—Jacobi structure and we will study the nature of such a
structure.

Theorem 4.4. Let (M, A, ) be a Nambu—Jacobi manifold of orderwith » > 3 and
x € M. Suppose thaD is the characteristic foliation o# and thatL is the leaf ofD
passing through. Then (A, O) induces a Nambu—Jacobi structure;( J;) on L and we
have:

(i) if A(x) # 0 thenL has dimensiom, A, is the Nambu—Poisson structure of order
n associated with a volume form di, and there exists a closed 1-fofip on L such that
Or =ig AL,

(i) if A(x) =0 andO(x) # 0, thenL has dimensiom — 1 andA; = 0; moreover, we
have:

(@) if n > 3 thenO, is the Nambu—Poisson structure of order 1 associated with a
volume form onL;

(b) if n = 3 thend, is a symplectic structure oh;

(i) if A(x) =0 andO(x) = 0 thenL = {x} and the induced Nambu—-Jacobi structure
is trivial.

Proof. If we taken functions f1, ..., f, defined onL, a bracget{fl,...,f,,}L can be
defined as follows. We extend eagh 1< j < n, to a functionf; on M, and put

(oo Fde ) = {F1s ooy F) )
for all y € L. Since

oo By =X5 5 ((F) = D" fuXoz i (famd)

(see (32) and remark 4.2) we deduce th#t, ..., f,}. is independent on the chosen
extensionsf,-. Of course,{, ..., }, satisfies the fundamental identity. Thus....,},
is a Nambu-Jacobi bracket dn Furthermore, it is clear that the structure, (J) restricts
to L, and that the restriction is just the Nambu—Jacobi structiire [0;) on L associated
with the Nambu—Jacobi brackét. . ., };.

Next, we will prove (i), (ii) and (iii).

(i) If A(x) # 0 then, from proposition 2.1, we deduce that there eXists 7. M such
that

ig, A(x) = O(x). (33)

Moreover, sinceA is a Nambu—Poisson tensor (see proposition 2.1) thdgr) is
decomposable. Therefore, using (29) and (33), we deduce that the dimension isf
n. Hence, the dimension of is n. This fact impliesA(y) # 0 for all y € L and,
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consequently\ ; is the Nambu—Poisson structure of ordeassociated with a volume form
on L (see proposition 11.8 in [19]).

On the other hand, the-vector A; induces an isomorphism af* (L, R)-modules
#, 0 QYL) — V'Y(L) given by # (a) = i Ay, for all « € QY(L). Thus, there exists
a unique 1-formg, on L such that], = #,(0,) = iy, A, and, from proposition 3.2, we
conclude that; is closed.

(i@ If n > 3, A(x) = 0 andO(x) # O, then, proceeding as in the above case, we
prove that the dimension @P, is n — 1. Therefore, the dimension of the leAfisn — 1
which implies thatA; = 0 and that-l; (y) # 0, for all y € L. Thus,J; is the Nambu—
Poisson structure of order— 1 associated with a volume form dn (see proposition 11.8
in [19]).

@iD(b) If n = 3, A(x) = 0 andd(x) # 0O then, since is a Poisson structure, we
deduce that the dimension @, is even (see (29)). Hence, the dimensionlofs also
even. Consequentlyy; = 0 and[J; is a symplectic structure oh (note that ifA(y) # 0
for some pointy of L then we would obtain that the dimension bfis three which is a
contradiction).

Next, we will show that the dimension df is two. For this purpose, we will prove
that[J. (x) is decomposable. Sincé.(y) # O for every pointy € L, we deduce that there
exists an open neighbourhodd, in L of x such that

O.(df1,df2) #0 (34)

alongU., where f; : Uy, — R are C* real-valued functions oW, .
On the other hand, using (4) and the fact that = 0, it follows that

Oudfi, df0, = X0 A x5 (35)
where X ~* is the Hamiltonian vector field on the symplectic manifold {(J,) associated
with the functionf;. Thus, from (34) and (35), we conclude that (x) is decomposable.

(i) If A(x) = 0 and(x) = 0 then all the Hamiltonian vector fields vanish xat
Hence, the leal. reduces to the point. O
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